On the Number of Isomorphism Classes of Cm Elliptic Curves Defined over a Number Field
نویسنده
چکیده
The theory of complex multiplication has proven to be an essential tool in number theory, mainly due to the connections with class field theory developed by Kronecker, Weber, Fricke, Hasse, Deuring, and Shimura, among others. Certain important results have been shown first in the case of complex multiplication. Thus, it is a natural question to find all the isomorphism classes of elliptic curves with complex multiplication defined over a fixed number field, for which these important results hold. In this article, we prove an upper bound on the number of isomorphism classes of CM elliptic curves defined over a number field of a fixed odd degree N , in terms of the prime factorization of N .
منابع مشابه
On the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملCounting Elliptic Surfaces over Finite Fields
We count the number of isomorphism classes of elliptic curves of given height d over the field of rational functions in one variable over the finite field of q elements. We also estimate the number of isomorphism classes of elliptic surfaces over the projective line, which have a polarization of relative degree 3. This leads to an upper bound for the average 3-Selmer rank of the aforementionned...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملIsomorphism Classes of Elliptic Curves Over a Finite Field in Some Thin Families
We give a non trivial upper bound for the number of elliptic curves Er,s : Y 2 = X3 + rX + s with (r, s) ∈ [R + 1, R + M ]× [S + 1, S + M ] that are isomorphic to a given curve. We also give an almost optimal lower bound for the number of distinct isomorphic classes represented by elliptic curves Er,s with the coefficients r, s lying in a small box.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014